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Abstract 
Within the framework of the periodic bond chain 
analysis for the prediction of crystal morphology, 
connected nets play a crucial role. For a face (hkl) often 
more than one connected net is found. Symmetry 
relations between such connected nets can give rise to 
symmetry roughening of nets. In this paper, all cases 
where symmetry may lead to symmetry roughening 
are derived. The role of a mother phase in contact with 
the crystal is explicitly taken into account. It turns out 
that cases of symmetry roughening are, in a sense, 
complementary to situations where the classical 
Bravais -Fr iedel -Donnay-Harker  selection rules apply. 

1. Introduction 
In paper I of this series, a physical basis was given for the 
classical Har tman-Perdok  or periodic bond chain (PBC) 
analysis which is used to predict the morphology of a 
crystal from the crystal structure in terms of bonds 
between growth units (Grimbergen, Meekes et aL, 1998). 
So far, the bond energies have only played a minor role 
in the treatment. They will, however, be dealt with in a 
following paper. In paper I, mainly the determination of 
F faces, i.e. those (flat) faces that may occur on an 
equilibrium or growth form of a crystal in terms of 
connected nets, has been treated. An F face (hkl) was 
defined as a crystal face (hkl) with a roughening 
temperature higher than OK. The derivation and 
analysis of all connected nets of a crystal face offer a 
convenient way to determine whether a face is an F face 
or not. Statistical thermodynamic models of surfaces of 
relatively simple crystal structures play a key role in this 
analysis. As explained in paper I, a connected net (hkl) 
is a graph made up of points (representing the growth 
units) connected by bonds formed by the combination of 
at least two intersecting non-parallel so-called direct 
chains. A connected net (hkl) is repeated over a distance 
dhkt, which is the interplanar distance of faces (hkl). The 
effect of a mother phase on the stability of an F face was 
explicitly taken into account. References to survey 
papers on PBC analysis can be found in paper I. 
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A kind of roughening, namely symmetry roughening, 
which is typical for certain pairs of equivalent connected 
nets was also introduced. One often finds pairs of 
connected nets for a face (hkl) that are mutually 
equivalent according to the space-group symmetry. 
Some of these pairs turn out to give rise to symmetry 
roughening of the corresponding crystal face at 
T = 0 K. In this paper, symmetry roughening is inves- 
tigated in more detail. Another  more practical reason 
for studying the effect of symmetry relations between 
connected nets of a crystal face is the large amount of 
connected nets that may be found for a single face. To 
avoid a superfluous energy calculation for such pairs, 
rules based on symmetry arguments and the physics of 
the roughening transition are derived in order to predict 
such a roughening in advance. This will be even more 
important for F faces that merely have such pairs of 
connected nets as such a face will not show up on a 
crystal form despite the presence of connected nets. 

All cases where symmetry may lead to symmetry 
roughening are derived. A distinction is made between 
pairs of connected nets giving rise to microscopic 
symmetry roughening, leading to a macroscopically fiat 
face, and pairs giving rise to macroscopic symmetry 
roughening for which the face gets rough even macro- 
scopically. Analogously to paper I, the role of a mother 
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Fig. 1. Model crystal graph. The space group is PI; bonds d actually 
consist of bonds dl to d4 in the (100) face (not indicated); bonds e 
also consist of four different bonds. 
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phase in contact with the crystal is explicitly taken into 
account. 

This paper is organized as follows. First, the 
phenomenon of symmetry roughening will be explained 
and illustrated for one specific example. In the next 
section, all symmetry elements that may lead to 
symmetry roughening will be derived and studied when 
the effect of a mother phase is neglected for some 
examples of connected nets. Such cases are referred to 
as a broken-bond description (Grimbergen, Meekes et 
al., 1998). The effect of the presence of a mother phase 
will then be treated. The generalization to any crystal 
graph completes the classification. In the Discussion, the 
findings are summarized and put in a broader perspec- 
tive. Finally, Conclusions are given. 

2. Symmetry roughening 
An example is given of an F face having a pair of 
connected nets that gives rise to symmetry roughening. 
Consider the crystal graph presented in Fig. 1. The unit 
cell contains one growth unit A and one growth unit B. 
This graph differs from the model graph used in paper I. 
The stoichiometry is still AB, though the symmetry is 
drastically reduced as a starting point for each example 
treated and it is, thus, assumed that the symmetry of the 
corresponding crystal is P1. Labelling of bonds and 
growth units is also different compared with paper I. 
Furthermore, bonds e are added. As a consequence of 
the absence of symmetry, the bonds d actually consist of 
four different bonds d~ to d4 in the (100) face of the unit 
cell. Also, bonds e consist of four different bonds. In Fig. 
1, we do not make this distinction for the sake of clarity. 
In the examples that follow, sometimes some of the 
bonds are neglected although always a connected crystal 
graph is considered. Mainly the [100] and [001] projec- 
tions of the graph for different symmetry elements, 
which are added temporarily, resulting in triclinic or 
monoclinic space groups, are studied. As a result, 
frequently space groups are mentioned that do not 
conform to the standard settings. This is a result of the 
choice to treat all cases within the same crystal graph for 
the sake of clarity. In all cases, the space-group symbols 
explicitly give the setting and, thus, the orientation of a 
mirror or rotation axis. It has to be noted that when 
drawing (crystal) graphs only the topology is relevant 
and actual crystallographic angles may differ from 90 ° 
depending on the space-group symmetry of the crystal 
considered. An important distinction has to be made 
between symmetry elements with and without a non- 
primitive translation. Homogeneous symmetry elements 
such as a mirror, an n-fold rotation axis and the inver- 
sion have no non-primitive translation and are elements 
of point groups. The term inhomogeneous symmetry 
element is used for glide planes and screw axes having a 
non-primitive translation. Later, the symmetry of the 
crystal in general is discussed. 

As an example of symmetry roughening consider the 
case that there is a horizontal mirror plane mz through 
the layers of growth units A (and B). As a result, the 
four different bonds d~ to d4 now are equivalent in two 
pairs denoted d~ and d2, respectively. For the moment, 
the bonds a, b and e are neglected. The mirror symmetry 
is destroyed for a semi-infinite crystal in contact with a 
mother phase as was discussed in paper I. For the 
moment, however, the effect of a mother phase is 
neglected, implying also that any surface reconstruction 
is ruled out, analogously to paper I. 

Fig. 2 shows that for the orientation (001) two 
connected nets can be identified which are related by the 
horizontal mirror plane. Bonds p and q make the nets of 
the figure connected in two dimensions. In the figure 
also, a cut that starts along the connected net (001)1, 
makes a step to the connected net (001)2 and follows the 
latter one is indicated. Such a profile corresponds to the 
same broken-bond energy per surface mesh area as a 
pure (001)1 or (001)2 connected net. In other words, the 
step energy of the artificial step is zero. Although there 
are two connected nets present, the face (001) always 
gets rough as the step energy equals zero. The (001) face 
can have many such steps, both from (001)1 to (001)2 and 
from (001)2 to (001)1 without any difference in broken- 
bond energy. Such a face is rough as long as there is no 
other connected net possible for that orientation. In the 
example, this is the case as (001)1 and (001)2 are the only 
connected nets possible according to the definition. 

This example of roughening related to the presence of 
a symmetry element was already mentioned by 
Bennema & van der Eerden (1987). The example in Fig. 
2 shows a case where the connected nets of the 
symmetry pair are situated at different heights along the 
face normal. This results in a roughening in the sense 
that on a macroscopic scale the face rounds off. It is also 
possible that the connected nets are at the same height, 
for example, owing to a mirror perpendicular to the face. 
In such a case, the pair gets rough in the sense that no 
distinction can be made between the two connected nets. 
The face, then, stays fiat on a macroscopic scale. The 
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Fig. 2. Symmetry roughening for the (001) connected nets. The [I00] 
projection is drawn. A homogeneous horizontal mirror plane m runs 
through the growth units. The solid line follows a path from (001)~ to 
(001)2 without cost of energy. 
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distinction between these two kinds of symmetry 
roughening is discussed below in more detail. 

3. Possible cases of symmetry roughening 

3.1. Relevant symmetry  

The relevant symmetry is the space-group symmetry 
of the crystal; this is the complete symmetry for an 
infinite crystal. There are two important restrictions that 
lower the symmetry. 

(i) The symmetry of a semi-infinite crystal, that is, a 
crystal on one side bounded by a (flat) face, is generally 
lower. As will be seen, only the local symmetry of the 
connected nets is relevant for symmetry roughening. 
Nevertheless, surface reconstruction can affect this local 
symmetry severely. The presence of a mother phase can 
put even more restrictions on the symmetry considera- 
tions. This symmetry reduction has been treated in 
paper I. For the moment, it is assumed that, if a mother 
phase is present, its effect, as far as symmetry is 
concerned, is negligible and also surface reconstruction 
is neglected. 

(ii) In order to find the connected nets, the crystal is 
reduced to the crystal graph, which is defined by points 
made up of the growth units of the crystal, together with 
the bonds. Generally, the points are at the centre of mass 
of those growth units. Therefore, for a connected net 
(and also for the crystal graph), the symmetry is gener- 
ally higher than for the corresponding connected net 
(crystal), defined on the positions of all atoms or ions of 
the crystal. As a result, we, sometimes, will have to 
reconsider the actual space-group symmetry of the 
crystal. 

In general, the space group G is the group {Ri][g;}, 
where R; are all elements of the point group K. The 
translations g; consist of primitive translations of the 
lattice A together with the relevant non-primitive 
translations. The non-primitive translations depend on 
the choice of the origin. The primitive translations are 
only needed for the symmetry group of the unit cell and 
depend also on the growth unit or bond under consid- 
eration. Using this convention allows one to restrict 
oneself to the R i together with the non-primitive trans- 
lations modulo the primitive translations when consid- 
ering the symmetry restrictions on the connected net. 
One has to bear in mind, however, that the primitive 
translations of Ri, in the case of a connected net, are 
those that bring the growth units and bonds back into 
the connected net. In other words, the unit cell of the 
connected net as determined by the interplanar distance 
dhk ! and a mesh a r e a  Mhk ! is considered. The mesh area is 
defined by dhk t • Mhk t = V, where V is the volume of the 
unit cell of the crystal. To be more precise, the symmetry 
Gs of the slice corresponding to the connected net will 
be the relevant one. The subscript s is dropped in the 
following. A connected net is denoted by kT, kt, where the 

superscript n labels the different connected nets possible 
for the F face (hkl) having a normal khk I, where 
Ikhk/] = 1/dhk t. If not leading to confusion, the indices 
hkl  or the label n are suppressed. 

In general, R 6 G transforms a connected net k 
into another connected net k'. Note that growth units 
at the end position e 7 6 k of a bond j are equivalent 
(symmetry related) to those at eT' 6 k' and that this also 
holds for starting positions of the bond at c~ and c)". 
Therefore, also the bonds b i ~ k and b; are equivalent. 
Thus, the bond energies of bj and b': are equal and even 
the connected net energy E ~"ce = ~--~j E(bj) is the same 
for k and k'. 

3.2. Orientation 

A general transformation R 6 K transforms a 
connected net k into another connected net k' with a 
different orientation. Note that a different orientation is 
also found if k' = - k .  The latter case has been called a 
case of boundary swapping in paper I. 

For a different orientation, the symmetry element R 
only implies that if the net k leads to a stable F face k, 
the face k' -- Rk is as stable. 

For example, a fourfold rotation axis parallel to the c 
axis ensures that the faces (and all of its connected nets) 
(100), (i00), (010) and (0i0) are equivalent and have the 
same slice energy E ~"ce. 

Symmetry elements that change the orientation of the 
connected net such that k ' ¢ - 4 - k  cannot give rise to 
symetry roughening. One can, and it is usually more 
efficient, apply the symmetry elements that transform a 
connected net into one with a different orientation in 
advance, thus decreasing the number of nets that have to 
be checked on connectedness or for which the energy 
has to be calculated. 

3.3. Orientation-conserving symmetries (k' = k) 

One can, in the case that k' = k, limit the discussion to 
symmetry elements that conserve the orientation of a 
connected net. The special case of boundary swapping, 
that is k ' - - - k ,  will be treated below. Therefore, a 
certain connected net k is considered. The symmetry 
elements R that leave its orientation invariant are 
(glide) mirror planes and (two-, three-, four- and sixfold) 
rotation (screw) axes that are perpendicular to the net 
and thus parallel to k. 

For these symmetry operations, one can distinguish 
four different situations. 

3.3.1. Singlet due to a homogeneous  symmetry  element. 
Consider the case that the symmetry operation R is a 
homogeneous mirror plane or a homogeneous two-, 
three-, four- or sixfold axis perpendicular to the 
connected net. If the connected net is transformed into 
itself, it is called a singlet and there is no symmetry 
roughening. 
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3.3.2. Doublet due to a homogeneous symmetry 
element. The second situation considered refers to the 
case that  the net, owing to a homogeneous  symmetry 
operat ion,  is not t ransformed into itself. Then, the 
symmetry e lement  gives rise to equivalent  connected 
nets that are at the same height with respect to dk. A 
doublet ,  triplet, quadruplet  or sextet of equivalent  
connected nets is found for, respectively, a two-, three-, 
four- or sixfold rotat ion axis. A mirror plane gives rise to 
a doublet.  All multiplets can be reduced to sets of 
doublets. In these cases it is, sometimes, possible to 
make  a path via bonds from one connected net to the 
other  without energy cost. The consequences of this will 
be worked out in §3.3.4. 

3.3.3. Doublet due to an inhomogeneous symmetry 
element; BFDH. The case of a screw axis or a glide plane 
perpendicular  to the connected net k always imposes 
restrictions. 

In the case of the repeated action of an n-fold screw 
axis, one obtains n mutually equivalent  connected nets 
with thickness dk/n that differ in height as seen along 
the screw axis. When the mutual  shift between the 
connected nets is an integer times dk, the situation 
reduces to the case of §3.3.1; otherwise, the n mutually 
equivalent  connected nets kT, kt lead to a 'selection rule'  
for the face khk t. For example, an n-fold screw axis 
parallel to the c axis leads to the selection rule that  (001) 
can only be an F face if I = n m  (m ~ Z). 

Analogously,  the case of a glide plane perpendicular  
to the connected net k with the glide direction not 
perpendicular  to k is considered. Now, one finds two 
equivalent  connected nets that  are mutually translated 
along the glide direction, which imposes restrictions on 
the Miller indices corresponding to the glide direction. 
For example, a glide plane a perpendicular  to the b axis 
gives rise to the selection rule that  (hOl) can only be an F 
face if h = 2m (m E Z). 

c ~ ' - - ' o  

b 
Fig. 3. Symmetry roughening for a pair of (001) connected nets owing 

to a glide plane perpendicular to the face for which the glide is 
perpendicular to k. The [100] projection is drawn. The mirror plane 
is in the plane of the figure and the dashed net is translated over 
[(1½0] with respect to the solid net; the space group is Pbl 1. Bonds b 
and e are neglected. The symmetry roughening is microscopic. 

These restrictions are already well established and are 
covered by the Brava i s -F r i ede l -Donnay-Harke r  
(BFDH) law (Friedel, 1911; Donnay  & Harker ,  1937; 
Har tman,  1973, 1978). 

In particular, the laws derived by Donnay  & Harker  
impose these restrictions on the possible F faces. The 
(connected)  nets that  are restricted by such selection 
rules consist in the case of an n-fold screw axis of n 
(possibly connected)  nets with thickness dk/n and with 
mutually the same structure. For a glide plane, two 
equivalent  connected nets are obta ined that  are trans- 
lated over the non-primitive glide translation. In other  
words, the connected nets restricted by the BFDH law 
need not  be checked on connectedness anyway. In such 
a case, one has to test the nets with smaller thickness 
according to the selection rules. Bravais and Friedel 
t reated the selection rules due the choice of a non- 
primitive cell. These are ra ther  straightforward as such a 
choice has direct impact on the indices (hkl). 

In conclusion, in the case of a glide plane (with a 
component  of the glide along k) or a screw axis, all faces 
perpendicular  to these are restricted by the selection 
rules, which are the same as the limiting reflection 
condit ions used in diffraction. As the BFDH rules have 
been formulated for complete slices, only the general 
condit ions are relevant.  The BFDH rules are relevant 
only for cases where boundary swapping plays no role, 
that  is, they apply always, even in the presence of a 
mother  phase. 

In the modern  formalism where the emphasis is laid 
on the connected nets, the special condit ions also play a 
role. The latter only apply if all growth units of the 
connected net are at the corresponding special positions. 
In that  case, one has to be careful and make a distinction 
between the actual molecule and the centre of gravity. If 
special condit ions apply for a connected net  for the 
inhomogeneous  symmetry elements discussed in this 
section, the BFDH rules already restrict the analysis to 
one of the two connected nets. For other  orientat ions 
(hkl) not restricted by the BFDH rules, however,  one 
can have pairs of connected nets. All such cases are 
covered by the other  sections of this paper. In other  
words, the special condit ions are automatically taken 
into account as the symmetry group of the slice corre- 
sponding to the connected net is considered. 

The connected nets that  obey the BFDH law still 
might lead to symmetry roughening due to other  
symmetry elements. 

3.3.4. Doublet due to an inhomogeneous symmetry 
element; non-BFDH. For the connected nets that  fulfil 
the condit ions imposed by the BFDH law, one can still 
find pairs of connected nets for which the nets are 
mutually equivalent  via one of the orientat ion-conser-  
ving symmetry operations. As the symmetry elements 
relevant for the BFDH selection rules can give no 
further restrictions on the nets obeying these rules, one 
is left with the case of a glide plane perpendicular  to the 
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connected net with the glide perpendicular to k. This 
symmetry element can give rise to symmetry rough- 
ening. Note that the connected nets of such a pair are at 
the same height with respect to d k. The situation is 
somewhat comparable to that of §3.3.2. An example can 
be found in Fig. 3. In this figure, the [100] projection of 
the model graph of Fig. 1 is again drawn. Bonds b and 
e are neglected and bonds p and/or q run along the 
projection direction. A b-glide plane perpendicular to 
the a axis is added and the space group becomes P b l l .  
As a result, the number of atoms in the unit cell is 
doubled, which is indicated by the dashed net in Fig. 3. 
The bonds d still consist of four different bonds each 
being doubled by the mirror. Horizontal bonds between 
the growth units A are maintained in order to have the 
whole crystal graph connected. The solid wavy lines 
represent a slice of one of the connected (001) nets of a 
pair. The second one is partly drawn with a dashed wavy 
line. A transition over a distance d00~ results in a non- 
zero step energy, ensuring a finite Ising transition 
temperature for the individual connected nets (Grim- 
bergen, Meekes et al., 1998). This pair of connected nets 
gets rough because a transition between the two nets can 
be made without energy cost as the same bonds are 
broken per mesh area. Therefore, the roughening does 
not result in a rounding off of the face; the two 
connected nets are at the same height. Fig. 3 
alternatively represents the situation for space group 
P l a l .  

The simplest example as far as the crystal is 
concerned, however, is that of a glide plane that trans- 
forms growth unit A into B. Consider, for instance, the 
(100) connected net in the [001] projection of Fig. 1 as 
presented in Fig. 4. In this example, bonds a, b and d are 
neglected. As this graph is rather complicated, the [010] 
projection showing the zigzag pattern of the bonds e for 
the two connected nets is also drawn. The relevant space 
groups are P l c l  and P l l b .  Bonds p and/or q, which are 
now symmetry related, make the nets connected. The 
four different bonds e are due to the glide plane grouped 
into two sets of bonds denoted e~ and e2. In this case, we, 
again, are dealing with two connected nets, as indicated 
in the figure, which are at the same height. Again, a 
transition between the two nets can be realised with no 
energy cost. 

As mentioned before, the situation dealt with in §3.3.2 
is comparable with that of this section. In fact, Figs. 3 
and 4 besides some minor details also illustrate the 
situations of space group P l m l  or Pl12 and of space 
group P211, respectively. To understand this, note that in 
the basic crystal graph of Fig. 1 the position of growth 
units A is arbitrary as the space group for this figure 
is P1. 

In conclusion, one finds that for orientation conser- 
ving symmetry elements ( k ' - - k )  the BFDH selection 
rules are complementary to the situations where 
symmetry roughening can take place. Symmetry 
roughening is limited to the cases of a glide plane 
perpendicular to the connected net with the glide 
perpendicular to k and to the case of a homogeneous 
plane or a homogeneous two-, three-, four- or sixfold 
axis perpendicular to the connected net giving rise to 
doublets. In all these cases, the two connected nets which 
are symmetry related are at the same height. Obviously, 
no symmetry roughening is found for singlets. 

3.4. Orientation-inverting symmetries (k' = - k )  

A new case arises when one considers the symmetry 
elements that invert the orientation of a connected net. 
These are a mirror or a twofold axis parallel to the 
connected net and the inversion. In this case, the upper 
and lower sides of the connected net are interchanged 
and one can speak of boundary swapping. Now, one can 
again distinguish four situations. The different cases are 
again distinguished by the presence of a non-primitive 
translation but now also by the position of the symmetry 
element along the face normal. There exist special 
positions of a connected net for a symmetry element if 
the net is transformed into itself modulo primitive 
translations. Such singlets are non-polar, that is, despite 
the boundary swapping, the mother phase interacts in 
the same way with the two surfaces (Grimbergen, 
Meekes et al., 1998). If the symmetry element is not at a 
special position of the connected net, the transformed 
net will be displaced along the face normal and the 
corresponding members of the doublet will differ in 
height and/or lateral position. A polar connected net 
cannot be a singlet under orientation-inverting symme- 
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Fig. 4. Symmetry roughening for a pair of (100) 

connected nets owing to a glide plane perpendicular 
to the face for which the glide is perpendicular to k. 
The space group is Plcl  or Pl lb .  Both the [001] 
projection (left) and the [010] projection (right) are 
drawn. The vertical bonds are p and q bonds; they are 
symmetry related in this case but still indicate the 
rows of former growth units A and B, respectively. 
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tries. Note that the special positions of a connected net, 
in general, differ from those of the unit cell. 

3.4.1. Singlet due to a symmetry  operation at a special 
position. For a twofold (screw) axis or a (glide) mirror 
plane parallel to the connected net or the inversion, the 
symmetry operation transforms the net into itself 
modulo a primitive translation if the symmetry opera- 
tion is at a special position of the connected net. We, 
then, are dealing with a singlet again. Despite that, 
formally, one can speak of boundary swapping and 
effectively there is no difference in the surface structure. 
In such a case, the (single) net is non-polar and there is 
no restriction. 

3.4.2. Doublet  due to a homogeneous  symmetry  
operation. For a homogeneous symmetry element 
giving rise to boundary swapping, symmetry roughening 
can occur, namely when the element is not at a special 
position of the connected net. The net can be polar or 
non-polar. In such a case, the two connected nets of the 
pair have a height difference. An example can be found 
in Fig. 5. The graph in this figure represents again the 
[100] projection of the graph of Fig. 1. Bonds e are 
neglected. It illustrates a situation for which the space 
group is P11m, P211 or P121. Therefore, the space 
group P i  is also covered by this example. The unit-cell 
content is doubled. Still, the bonds d consist of four 
different bonds, each doubled by the symmetry opera- 
tion. A horizontal bond between the growth units is 
added in order to have the whole crystal graph 
connected. The graph suggests a smaller unit cell owing 
to the symmetry imposed. This is a case where the 
symmetry of the graph is higher than that of the crystal. 
The centres of gravity represent for example a polar 
molecule with a dipole moment parallel to k. The wavy 
solid line represents a slice of one of the connected nets 
of a pair. The second net symmetry related to the first 

one is represented by the dashed wavy cut. As the figure 
shows, again, a transition between the two nets can be 
made without energy cost. Hence, the pair gives rise to 
macroscopic symmetry roughening when broken bonds 
are considered. 

Note that, as in the case of Fig. 2, the two connected 
nets of the pair would give rise to roughening because 
the transition from the solid to the dashed net in Fig. 5 
can be continued to the solid net one interplanar 
distance higher, again without energy cost. 

3.4.3. Doublet  due to an inhomogeneous symmetry  
operation not at a special position. Next, the case of an 
inhomogeneous symmetry element not on a special 
position of the connected net is considered. Firstly, the 
case that the symmetry operation gives rise to two 
equivalent connected nets translated along a non- 
primitive translation parallel to the net is treated. There 
is no height difference for the doublet. In fact, Fig. 3 can 
be interpreted also to serve as an example for this case. 
For this, the space group is assumed to be P l l b  or P1211. 
However, in contrast to the situation dealt with in §3.3.4, 
in this case there is boundary swapping. Note that the 
symmetry element acts on the growth units and not on 
the boundary of the cuts. 

There is no difference in broken-bond energies and 
even a path from one of the nets to the other does not 
cost any energy. Therefore, the pair still gives rise to 
microscopic symmetry roughening. 

Secondly, the situation of a glide plane or twofold 
screw axis perpendicular to k but not at a special posi- 
tion of the connected net, giving rise to two nets also 
differing in height along the face normal, will be treated. 
Fig. 5 can serve as an illustration for space groups P2111 
or P l l a .  Also in this case, a transition between the two 
nets can be made without cost of energy. Hence, the pair 
gives rise to macroscopic symmetry roughening in a 
broken-bond treatment. 

- , # , -  - /%- -/% - .  
,, i p x p s  ,, r "  

pp  ",~ 

b 
Fig. 5. Symmetry roughening for a pair of ((X)I) connected nets. The 

space group is Pllm, P211 or P121. The [100] projectkm is drawn. 
The dashed cut is the symmetry image of the solid cut. 

4. The presence of a mother phase 

The situations described above change when one 
considers a crystal in contact with a mother phase. Then, 
the description in terms of broken bonds, in principle, no 
longer holds. As discussed in paper I, only a few 
symmetry elements of the crystal survive in the situation 
of a semi-infinite crystal in contact with a mother phase 
in the absence of reconstruction and assuming that at 
least topologically the outer layers of the surface are 
comparable to the bulk structure. These symmetry 
elements are the rotation axes perpendicular to the face 
and a mirror or glide plane perpendicular to the face 
with the glide along the face. This severe symmetry 
reduction occurs because successive layers in the crystal 
near the surface will interact differently with the mother 
phase. Of course, the interaction can be extremely 
complicated owing to adsorbed complexes, reconstruc- 
tion etc. For the problem of symmetry roughening, 
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however,  it is assumed that only the symmetry proper- 
ties of the outermost  layer determining the degeneracies 
in energy are relevant.  Topologically, this layer will be 
comparable  with a corresponding bulk layer when no 
reconstruct ion is present. Therefore,  energies may differ 
but the symmetry propert ies  remain intact up to the 
polari ty of a layer. In o ther  words, it is assumed that, 
when a step is realised on a surface, the vanishing of the 
step free energy owing to symmetry is determined by the 
symmetry of the bulk crystal. Nevertheless, for polar 
cuts, there will be a difference in surface energy owing to 
the mother  phase in the case of boundary  swapping. 

As an example, the first case of Fig. 2 is reconsidered. 
The two alternative connected nets (001)1 and (001)2 
will interact differently with the mother  phase. There- 
fore, the mirror symmetry will be lost for, at least, the 
outermost  layer, be it (001)1 or (001)2. Hence, the 
surface energies for the two will be different. Thus, the 
symmetry roughening caused by this pair vanishes when 
a mother  phase is present. 

If the symmetry e lement  giving rise to boundary  
swapping is at a special position of the connected net, 
the two boundaries  will be equivalent.  In such a case, the 
interaction with the mother  phase will be the same for 
the two boundaries  and the pair still gives rise to 
symmetry roughening.  

5. More complicated crystal graphs 

The quest ion arises whether  the classification in terms of 
symmetry presented in the previous sections also holds 
for more complicated connected nets. In order  to study 
this, one can simply add bonds to the nets studied up to 
now. As an example, reconsider the case of Fig. 5. If one 
adds an arbitrary bond to the graph, the symmetry 
opera t ion  generates equivalent  bonds. In Fig. 6, the 

situation is drawn. Any  such equivalent  bond is again cut 
as many times by the solid wavy boundary  as it is by the 
dashed wavy boundary. There  is one type of bond,  
however,  that can destroy symmetry roughening. If one 
reconsiders the case of Fig. 3, one can again add any 
bond and its symmetry-equivalent  ones. In this case, 
however,  there is one kind of bond that is not cut as 
often on making a transit ion from one of the two 
equivalent  connected nets to the other. Such a bond is a 
horizontal  bond cut by the boundary. The situation is 
illustrated in Fig. 7. As a result, such a transit ion in the 
presence of a horizontal  bond that  is cut by the two 
connected nets always favours a repeated jump from 
one connected net of the pair to the other. 

It is easily verified that for a situation for which 
symmetry roughening occurs for a pair of connected 
nets with no height difference combined with a hori- 
zontal bond cut by the boundaries  there exists an 
al ternative connected net owing to a repeated jump 
between the nets. 

Al though the al ternative net can be less stable than 
each of the pairs of connected nets, as the horizontal  
bond energy can be (very) small compared with the 
difference between the lower d bonds and the upper  
ones in Fig. 7, in such a case, the symmetry roughening 
of the pair is lifted. In conclusion, one finds that  the 
minimum demand for the phenomenon  of symmetry 
roughening is the existence of a doublet.  If any bond 
perpendicular  to k would destroy the symmetry rough- 
ening, there exists an al ternative surviving connected 
net. 

6. Discussion 

The results obtained up to now are summarized in 
Table 1. Symmetry roughening covers different kinds of 
roughening for which the step (free) energy is zero 
already at T = OK. The major  difference between 
symmetry roughening and well known kinds of rough- 
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' " ' Fig. 7. Symmetry roughening for the pair of (001) connected nets of 
Fig. 3. The added horizontal bond between the growth units B, cut 

Fig. 6. Symmetry roughening for the pair of (001) connected nets of by the wavy boundary, is omitted once on a transition from the solid 
Fig. 5. Two new bonds have been added. The dashed bonds are the to the wavy boundary. An alternative flat connected net in this 
symmetry image of the solid ones. situation is indicated. 
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Table 1. Cases of  symmetry roughening for a crystal in the broken-bond description and for a crystal in contact with a 
mother phase 

k' = Rk; m: (glide) mirror plane: 2, 3, 4, 6: (screw) axes: BFDH: Bravais-FriedeI-Donnay-Harker rules apply; SR: symmetry roughening: sh: 
doublet consisting of nets at the same height: dh: doublet consisting of nets at different heights; sp: special position for the connected net; np: non- 
polar net. 

k':~ +k  
k'---- k 

k'=  - k  

R Vacuum Mother phase 

No restrictions No restrictions 
rnllk Homogeneous Singlet or SR; sh Singlct or SR; sh 

Glide l k SR; sh SR; sh 
Glide not 2_ k BFDH BFDIt 

2, 3, 4, 6 11 k Homogeneous Singlet or SR; sh Singlet or SR: sh 
Screw BFDH BFDH 

m I k Homogeneous or glide at sp, np Singlet Singlet 
Homogeneous not at sp SR; dh No restrictions 
Glide not at sp SR; sh or dh No restrictions 

2 _1_ k Homogeneous or screw at sp, np Singlet Singlet 
Homogeneous not at sp SR; dh No restrictions 
Screw not at sp SR; sh or dh No restrictions 

i At sp, np Singlet Singlet 
Not at sp SR; sh or dh No restrictions 

ening such as thermal  roughening and kinetical rough- 
ening is that  the latter kinds of roughening take place for 
tempera tures  T > 0 K. Symmetry  roughening can occur 
in the case of doublets of connected nets. In that  light, 
only connected nets that  are singlets and have a thick- 
ness dhk I according to B F D H  give rise to F faces. 

This definition is appropriate  when referred to crystal 
graphs because there the relevant  bonds are already 
chosen. When  referred to the actual crystal, one has to 
realise that  at low tempera tures  more and more weak 
bonds become relevant  for the stability of the crystal 
and its faces. Such addit ional  bonds strictly speaking 
could destroy the symmetry  roughening at lower 
temperatures.  

In a sense, symmetry  roughening is an artifact as a 
result of the pursuit  of F faces in terms of connected nets 
and the definition of an F face as a crystal face (hkl) with 
a roughening tempera ture  larger than zero. The 
exhaustive determinat ion  of all F faces for any crystal in 
terms of that  definition, however,  is at the moment  only 
feasible via a determinat ion  of all connected nets, as 
discussed in paper  I. An analysis of all connected nets 
simply implies the rejection of appropriate  pairs for 
which symmetry  roughening occurs. 

A kind of symmetry  roughening can also occur in a 
si tuation for which the symmetry  between the relevant  
bonds has an accidental nature.  

Note that  while symmetry  roughening imposes 
restrictions on the F faces as they are rough at 0 K, the 
B F D H  rules impose restrictions on the choice of faces 
(and thus connected nets) because of the existence of a 
th inner  slice with the same surface energy. As the 
symmetry  elements  relevant  for B F D H  never cause 
boundary  swapping, the corresponding rules always 
hold, even in the presence of a mother  phase. 

Coming back to symmetry  roughening,  an important  
distinction has to be made between cases for which the 

pair consists of connected nets at the same height and 
ones for which they differ in height  with respect to the 
direction of k. 

If the nets only have a zero step (free) energy for 
transit ions between nets at the same height, the 
corresponding face does not get rough macro- 
scopically. The only result is that  it is impossible to 
make a distinction between the nets on a microscopic 
scale. In such a case, the steps can be considered as 
domain walls between surface domains having a 
configuration corresponding to the two connected nets. 
The free energy corresponding to a step with height 
dhk ! is still finite. Therefore,  these nets lead to a stable 
F face. Microscopic roughening is related to the situa- 
tion of so-called disordered flat (DOF)  phases found in 
statistical thermodynamica l  solid-on-solid models with 
next-neares t -neighbour  interactions (Rommelse  & den 
Nijs, 1987; den Nijs & Rommelse,  1989). Such a si tuation 
can lead to increased growth rates (Grimbergen,  
Meekes  et al.,, 1998; Grimbergen,  Bennema & Meekes, 
1998). 

For symmetry  roughening of a pair of connected nets 
at different height,  the face gets rough macroscopically if 
there is no al ternative singlet connected net  present.  
Looking at Table 1, one finds that  the only cases where 
macroscopic symmetry  roughening can take place are 
those for which boundary  swapping occurs due to 
symmetry  elements  not at special positions of the 
connected net. The same table shows that such a 
macroscopic symmetry  roughening is, in principle, lifted 
in the case of a mother  phase in contact  with the crystal 
face. In any case, macroscopic symmetry  roughening will 
not appear  when the or ientat ion (hkl) has a singlet 
because the latter ensures that  the roughening 
tempera ture  for the or ientat ion will be larger than 0 K. 
Microscopic symmetry  roughening can still occur even if 
a singlet is present.  
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In general, the symmetry of a crystal can be higher 
than that of the monoclinic and triclinic cases treated up 
to now. In order to test the presence of symmetry 
roughening for any face (hkl), one can select all 
symmetry elements of the space group that leave khk ! 
invariant up to a sign and use Table 1 as a reference. One 
symmetry element giving rise to symmetry roughening is 
enough to discard the pair of connected nets if no 
alternative singlet is present. One has to bear in mind, 
however, that only symmetry roughening with a height 
difference gives rise to a macroscopic roughening effect 
and that the presence of a mother phase, in principle, 
destroys such an effect. Microscopic symmetry 
roughening is not destroyed in the presence of a mother 
phase. 

The inversion plays a special role. It was not 
mentioned in §3.4.3 because there inhomogeneous 
symmetry elements and P i ,  which is symmorphic, were 
treated. If one considers, however, a space group like 
Pnnn, then, depending on the choice of the origin, the 
inversion has a non-primitive translation (½11 ~ ). For such 
a space group, any face normal khk t is invariant under the 
inversion up to a sign and the non-primitive translation 
ensures the presence of a doublet with height difference 
as long as the inversion is not at a special position of the 
connected net. 

The effect of symmetry on crystal morphology has 
been treated in this paper on a microscopic scale without 
taking the actual growth mechanism into account. 
Microscopic growth mechanisms such as spiral growth 
are also symmetry determined. An example of such 
microscopic effects on interlacing as observed for spirals 
on crystals of e.g. SiC and N i S O 4  • 6H20 will be treated 
by van Enckevort & Bennema (1998). 

7. Conclusions 

In this paper, all possible symmetries in crystals where 
symmetry roughening of pairs of connected nets can 
take place are deduced. The relevant symmetries are 
those that leave the orientation of the face unchanged 
up to a sign. Within this catagory of symmetry elements, 
one can distinguish three situations: 

symmetry elements that leave the connected net 
invariant (singlet); 

symmetry elements that relate a doublet covered by 
the well established Bravais -Fr iedel -Donnay-Harker  
(BFDH) rules; 

doublets that can cause symmetry roughening. 
Singlets have no restriction and BFDH doublets result 
in selection rules that are the same as the general 
reflection conditions used in X-ray crystallography. 
When a pair of connected nets of the same face (hkl) 
obeying the BFDH conditions is related by symmetry, 
the face, in principle, gets rough when no alternative 
singlet is present. This does not always mean that the 

corresponding face (hkl) also becomes rough on a 
macroscopic scale. 

An important distinction is made between micro- 
scopic and macroscopic roughening. If the pairwise 
symmetric connected nets are at a different height as 
seen along the face normal, then the face becomes rough 
macroscopically, that is, gets rounded off if there is no 
alternative singlet connected net present. According to 
the definition of an F face given in paper I, such a face is 
not an F face. 

If the nets are at the same height, the face does not get 
rounded off but it always becomes rough micro- 
scopically unless there is an alternative connected net 
present. The alternative nets that can destroy symmetry 
roughening must contain bonds parallel to the face. 

The presence of a mother phase does not alter these 
cases as long as the symmetry element does not invert 
the boundaries of the connected nets, that is, as long as 
there is no boundary swapping. In the case of boundary 
swapping, the pair does not get rough if the symmetry 
element is at a special position of the connected net. In 
such a case, the net is non-polar. If the boundary 
swapping occurs for a more general position of the 
symmetry element and a mother phase is present, the 
interaction with the mother phase can destroy the 
symmetry roughening. All these situations are 
summarized in Table 1. 

It is clear that symmetry roughening can have severe 
implications for the morphology of crystals. First of all, 
the morphological importance of a face can be reduced 
drastically because a pair of connected nets of the face 
can get rough owing to symmetry roughening leaving a 
weaker alternative connected net behind. If there is no 
alternative, the face will not show up at all or is rounded 
off for macroscopic symmetry roughening. In the case 
of microscopic symmetry roughening, the face stays 
macroscopically flat. 

One of the questions that arise is whether the growth 
mechanism of microscopically rough faces is different 
from that of normal faces. Another  point to be studied is 
the effect of a finite temperature or a finite super- 
saturation. One can imagine that a pair of connected 
nets that is not exactly symmetry related but just differs 
slightly in bond energies will still become rough at a 
finite temperature or supersaturation. In such a case, 
one could speak of thermal symmetry roughening or 
kinetical symmetry roughening, respectively, or, more 
generally, of pseudo symmetry roughening. In practice, 
one frequently encounters crystals with pairs of 
connected nets that, though structurally clearly not 
related by symmetry, have very comparable bond ener- 
gies. On the other hand, a mother phase interacting with 
the crystal surface could cause only a small energy 
difference for a pair of connected nets in the case of 
boundary swapping. In such a case, the discriminating 
effect of the mother phase can be destroyed by a finite 
superstaturation. Again, the implications of a non- 
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equilibrium situation can have severe implications for 
the morphology. Such situations will be put in a broader 
perspective of morphological importance of faces in 
paper III of this series (Grimbergen, Bennema & 
Meekes, 1998). 

The effect of a mother phase interacting with the 
crystal surface has been neglected very often in the past. 
In this paper and paper I, the influence of the symmetry 
of connected nets in the boundary between crystal and 
mother phase is explicitly taken into account. Further 
studies into this matter including modelling studies will 
become more and more achievable using modern 
computing power and modelling software. In such 
studies, the implication of symmetry roughening and in 
particular pseudo symmetry roughening are expected to 
become apparent, offering a more reliable tool to 
predict crystal morphology using periodic bond chain 
analysis. 
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